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Learning Dynamical Systems
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Learning a Recursive Filter
Given:

Training Sequences:

(𝑜1, 𝑜2, … , 𝑜𝑇)

Output:
◦ Initial belief 𝑞1
◦ Filtering function 𝑓 𝑞𝑡+1 = 𝑓(𝑞𝑡 , 𝑜𝑡)

◦ Observation function 𝑔 𝐸 𝑜𝑡 𝑜1:𝑡−1 = 𝑔(𝑞𝑡)
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Learning a Recursive Filter
Given:

Training Sequences:

(𝑜1, 𝑜2, … , 𝑜𝑇)

Output:
◦ Initial belief 𝑞1
◦ Filtering function 𝑓 𝑞𝑡+1 = 𝑓(𝑞𝑡 , 𝑜𝑡)

◦ Observation function 𝑔 𝐸 𝑜𝑡 𝑜1:𝑡−1 = 𝑔(𝑞𝑡)

System
- Non-linear
- Partially observable
- Controlled

Algorithm
- Theoretical Guarantees 
- Scalability
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RNN [BPTT]

Learning a Recursive Filter
Given:

Training Sequences:

(𝑜1, 𝑜2, … , 𝑜𝑇)
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Fix g (Predictive State) Learn g (Latent State)
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Fix g (Predictive State) Learn g (Latent State)

Learn a model then derive 
f

Predictive State Models
[Method of moments: 
Two-stage regression]

HMM
[EM, Tensor Decomp.]

Directly Learn f 𝑞𝑡 ≡ 𝐸 𝜓(𝑜𝑡:∞) ∣ 𝑜1:𝑡−1
state = E[sufficient future 
stats]
PSIM [DAgger]
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Why restrict 𝑓 and 𝑔 ?

* Predictive State (a.k.a Observable Representation):

State is a prediction of future observation statistics 

 Future statistics are noisy estimates of the state.

 Reduction to supervised learning.

* Additional assumptions on dynamics facilitate the development of an efficient algorithm with provable 
guarantees.

* Local improvement is still possible.

Learning a Recursive Filter

PSM PSIM RNN
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Predictive State Model (Formulation)
Predictive State 𝑞𝑡 ≡ 𝑃 𝑜𝑡:𝑡+𝑘−1 𝑜1:𝑡−1 ≡ 𝐸 𝜓𝑡 𝑜1:𝑡−1

Extended Predictive State 𝑝𝑡 ≡ 𝑃 𝑜𝑡:𝑡+𝑘 𝑜1:𝑡−1 ≡ 𝐸 𝜁𝑡 𝑜1:𝑡−1

Linear Dynamics 𝑝𝑡 =𝑾 𝑞𝑡

𝑜𝑡−1 𝑜𝑡 𝑜𝑡+𝑘−1 𝑜𝑡+𝑘

future 𝜓𝑡

extended future 𝜉𝑡
𝝍𝒕 𝒒𝒕

Indicator Vector Joint Probability 
Table

1st  and 2nd 
moments

Gaussian 
Distribution
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Predictive State Model (Formulation)
Predictive State 𝑞𝑡 ≡ 𝑃 𝑜𝑡:𝑡+𝑘−1 𝑜1:𝑡−1 ≡ 𝐸 𝜓𝑡 𝑜1:𝑡−1

Extended Predictive State 𝑝𝑡 ≡ 𝑃 𝑜𝑡:𝑡+𝑘 𝑜1:𝑡−1 ≡ 𝐸 𝜁𝑡 𝑜1:𝑡−1

Linear Dynamics 𝑝𝑡 =𝑾 𝑞𝑡

Filtering: 𝑓 𝑞𝑡 , 𝑜𝑡 = 𝒇𝒇𝒊𝒍𝒕𝒆𝒓 𝑝𝑡, 𝑜𝑡 = 𝑓𝑓𝑖𝑙𝑡𝑒𝑟 𝑊𝑞𝑡 , 𝑜𝑡

𝑜𝑡−1 𝑜𝑡 𝑜𝑡+𝑘−1 𝑜𝑡+𝑘

future 𝜓𝑡

extended future 𝜉𝑡
𝝍𝒕 𝒒𝒕 𝒇𝒇𝒊𝒍𝒕𝒆𝒓

Indicator Vector Joint Probability 
Table

Bayes Rule:
𝑃 𝑜𝑡+1:𝑡+𝑘 𝑜1:𝑡 ∝ 𝑃(𝑜𝑡:𝑡+𝑘 ∣ 𝑜1:𝑡−1)

1st  and 2nd moments Gaussian 
Distribution

Gaussian conditional mean and 
covariance.

fixed

learned
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Predictive State Model (Formulation)
Predictive State 𝑞𝑡 ≡ 𝑃 𝑜𝑡:𝑡+𝑘−1 𝑜1:𝑡−1 ≡ 𝐸 𝜓𝑡 𝑜1:𝑡−1

Extended Predictive State 𝑝𝑡 ≡ 𝑃 𝑜𝑡:𝑡+𝑘 𝑜1:𝑡−1 ≡ 𝐸 𝜁𝑡 𝑜1:𝑡−1
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Filtering: 𝑓 𝑞𝑡 , 𝑜𝑡 = 𝒇𝒇𝒊𝒍𝒕𝒆𝒓 𝑝𝑡, 𝑜𝑡 = 𝑓𝑓𝑖𝑙𝑡𝑒𝑟 𝑊𝑞𝑡 , 𝑜𝑡

𝑜𝑡−1 𝑜𝑡 𝑜𝑡+𝑘−1 𝑜𝑡+𝑘

future 𝜓𝑡

extended future 𝜉𝑡

fixed

learned

Why linear 𝑾 ?
Crucial to the consistency of learning algorithm.

Why this particular filtering formulation ?
Matches existing models (HMM, Kalman filter, PSR)
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Predictive State Model (Learning)
𝜓𝑡 and 𝜁𝑡 are unbiased estimates of 𝑞𝑡 and 𝑝𝑡: 

• 𝜓𝑡 = 𝑞𝑡 + 𝜖𝑡

• 𝜁𝑡 = 𝑝𝑡 + 𝜈𝑡

Learning Procedure:

• ො𝑞0 =
1

𝑁
σ𝑖 𝜓𝑖

• Learn 𝑊 using linear regression with examples (𝜓𝑡 , 𝜁𝑡 )

𝑜𝑡−1 𝑜𝑡 𝑜𝑡+𝑘−1 𝑜𝑡+𝑘

future 𝜓𝑡

extended future 𝜉𝑡

𝜖𝑡 and 𝜈𝑡 are correlated
𝐶𝑜𝑣 𝑞𝑡 , 𝑝𝑡 ≠ 𝐶𝑜𝑣(𝜓𝑡, 𝜁𝑡)
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Predictive State (Learning)
𝜓𝑡 and 𝜁𝑡 are unbiased estimates of 𝑞𝑡 and 𝑝𝑡: 

• 𝜓𝑡 = 𝑞𝑡 + 𝜖𝑡

• 𝜁𝑡 = 𝑝𝑡 + 𝜈𝑡

Learning Procedure:

• ෤𝑞0 =
1

𝑁
σ𝑖 𝜓𝑖

• Denoise examples (𝜓𝑡 , 𝜁𝑡) to obtain ( ො𝑞𝑡 , Ƹ𝑝𝑡)

• Learn 𝑊 using linear regression with examples (ො𝑞𝑡 , Ƹ𝑝𝑡)

𝜖𝑡 and 𝜈𝑡 are correlated
𝐶𝑜𝑣 𝑞𝑡 , 𝑝𝑡 ≠ 𝐶𝑜𝑣(𝜓𝑡, 𝜁𝑡)

𝑜𝑡−1 𝑜𝑡 𝑜𝑡+𝑘−1 𝑜𝑡+𝑘

future 𝜓𝑡

extended future 𝜉𝑡

denoised future ො𝑞𝑡

denoised extended future Ƹ𝑝𝑡

???

𝑝𝑡 = 𝑊𝑞𝑡

𝐸 𝜁𝑡 𝑜𝑡−𝑘:𝑡−1 = 𝑊𝐸[𝜓𝑡 ∣ 𝑜𝑡−𝑘:𝑡−1]Use regression
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𝐸 𝜁𝑡 𝑜1:𝑡−1 = 𝑊𝐸[𝜓𝑡 ∣ 𝑜1:𝑡−1]

ො𝑞𝑡 = 𝑊 Ƹ𝑝𝑡



Learning Dynamical Systems Using 
Instrument Regression

𝑜𝑡−1 𝑜𝑡 𝑜𝑡+𝑘−1 𝑜𝑡+𝑘

history ℎ𝑡 future 𝜓𝑡

extended future 𝜉𝑡

S1A regression

S1B regression

S2 regression (learn W)

Condition on 𝑜𝑡 (filter)  𝑞𝑡+1
Marginalize 𝑜𝑡 (predict)  𝑞𝑡+1|𝑡−1

denoised future ෠𝐸[𝑞𝑡|ℎ𝑡]estimated future ො𝑞𝑡

denoised extended future ෠𝐸[𝑝𝑡|ℎ𝑡]

Apply W

estimated extended future Ƹ𝑝𝑡
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In a nutshell
* Predictive State:

◦ State is a prediction of future observations

◦ Future observations are noisy estimates of the state

* Two stage regression:
◦ Use history features to “denoise” states (S1 Regression)

◦ Use denoised states to learn dynamics (S2 Regression)
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What do we gain ?
* More understanding of existing algorithms:

◦ Spectral algorithms for learning HMMs, Kalman filters, PSRs are two stage regression algorithms with 
linear regression in all stages.

* Theoretical Results (Asymptotic and finite sample):

◦ Error in estimating 𝑊 is ෨𝑂 1/√𝑁 [Under mild assumptions]

◦ Exact rate depends on S1 regression error

* New flavors of dynamical systems learning algorithms:
◦ HMM with logistic regression.

◦ Online learning of linear dynamical systems (Sun et al. 2015).

◦ Linear dynamical systems with sparse dynamics (Hefny et al 2015, Gus Xia 2016).
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Predictive State Models as RNNs
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𝑞𝑡 𝑞𝑡+1𝑝𝑡𝑊 𝑓𝑓𝑖𝑙𝑡𝑒𝑟

෠𝜓𝑡
෠𝜓𝑡+1𝜓𝑡

𝑜𝑡

𝜓𝑡+1



Predictive State Models as RNNs

Predictive state models define RNNs that are 
easy to initialize !!
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Back to Special Case: Modeling Discrete 
Systems with Indicator Vectors
Assume the discrete case: 𝑜𝑡 is an indicator vector.

Let 𝜓𝑡 = 𝑜𝑡 and 𝜁𝑡 = 𝑜𝑡 ⊗𝑜𝑡+1

Then:

𝑞𝑡 Probability Vector

𝑝𝑡 Joint Probability Table

𝑓(𝑝𝑡 , 𝑜𝑡) Choose column from 𝑝𝑡 corresponding to 𝑜𝑡 then renormalize
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Back to Special Case: Modeling Discrete 
Systems with Indicator Vectors
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Back to Special Case: Modeling Discrete 
Systems with Indicator Vectors
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Back to Special Case: Modeling Discrete 
Systems with Indicator Vectors
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Predictive State Models as RNNs

Predictive units have a multiplicative structure, 
similar to LSTMs and GRUs.
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What about the continuous case ?



Mean-maps for Continuous Observations
Mean-maps provide a powerful tool to model non-parametric distribution using the feature map 
of a universal kernel.

A discrete distribution is a special case that uses the delta kernel and indicator feature map. 
Continuous distributions can be modeled using e.g. RBF kernel.

Discrete Case General Case

Indicator Vector Kernel feature map 𝜙(𝑥)

Joint Probability Table P(X,Y) Covariance Operator 𝐶𝑋𝑌

Conditional Probability Table Conditional Operator 𝐶𝑋|𝑌

Normalization P(X,Y)  P(X|Y) Kernel Bayes Rule 𝐶𝑋|𝑌 = 𝐶𝑋𝑌𝐶𝑌𝑌
−1
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Mean-maps for Continuous Observations
Mean-maps provide a powerful tool to model non-parametric distribution using the feature map 
of a universal kernel.

A discrete distribution is a special case that uses the delta kernel and indicator feature map. 
Continuous distributions can be modeled using e.g. RBF kernel.

Discrete Case General Case RFF Approximation

Indicator Vector Kernel feature map 𝜙(𝑥) RFF Feature Vector

Joint Probability Table P(X,Y) Covariance Operator 𝐶𝑋𝑌 Covariance Matrix

Conditional Probability Table Conditional Operator 𝐶𝑋|𝑌 Conditional Matrix

Normalization P(X,Y)  P(X|Y) Kernel Bayes Rule 𝐶𝑋|𝑌 = 𝐶𝑋𝑌𝐶𝑌𝑌
−1 Solve Linear System
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Results
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Extension to Controlled Systems
In controlled systems we have observations and actions. (e.g. car velocity and 
pressure on pedals)

𝑜𝑡

𝑎𝑡

𝑠𝑡 𝑠𝑡+1

Recursive Filter:

𝐸 𝑜𝑡 𝑞𝑡 , 𝑎𝑡 = 𝑔 𝑞𝑡 , 𝑎𝑡

𝐸 𝑞𝑡+1 𝑞𝑡 , 𝑜𝑡 , 𝑎𝑡 = 𝑓(𝑞𝑡 , 𝑎𝑡 , 𝑜𝑡)
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Extension to Controlled Systems
Same principle

𝑃𝑡 = 𝑊(𝑄𝑡)

This time, the predictive state is a linear operator encoding conditional distribution of future 
observations given future actions.

Example: Think of 𝑄𝑡 and 𝑃𝑡 as conditional probability tables.

Requires appropriate modifications to S1 regression. S2 regression remains the same.
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Extension to Controlled Systems
Two stage regression:   It is all about finding

𝐸[𝑄𝑡|𝑜𝑡−𝑘:𝑡−1, 𝑎𝑡−𝑘:𝑡−1]

0.1 0.8 0.5 0.2

0.3 0.1 0.2 0.1

0.6 0.1 0.3 0.7O
b

se
rv

at
io

n

Action
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Extension to Controlled Systems
Two stage regression:   It is all about finding

𝐸 𝑄𝑡 𝑜𝑡−𝑘:𝑡−1, 𝑎𝑡−𝑘:𝑡−1

Problem:

At each time step we observe a noisy version of

a slice of 𝑄𝑡

? ? 1 ?

? ? 0 ?

? ? 0 ?O
b

se
rv

at
io

n

Action
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Extension to Controlled Systems
Two stage regression:   It is all about finding

𝐸 𝑄𝑡 𝑜𝑡−𝑘:𝑡−1, 𝑎𝑡−𝑘:𝑡−1 = ෠𝑄(𝑜𝑡−𝑘:𝑡−1, 𝑎𝑡−𝑘:𝑡−1)

Problem:

At each time step we observe a noisy version of

a slice of 𝑄𝑡

Solution 1 (Joint Modeling):

Predict the joint distribution of observation and actions.

Manually convert to conditional table (e.g. normalize columns).

0 0 1 0

0 0 0 0

0 0 0 0O
b

se
rv

at
io

n

Action
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Extension to Controlled Systems
Two stage regression:   It is all about finding

𝐸 𝑄𝑡 𝑜𝑡−𝑘:𝑡−1, 𝑎𝑡−𝑘:𝑡−1 = ෠𝑄(𝑜𝑡−𝑘:𝑡−1, 𝑎𝑡−𝑘:𝑡−1)

Problem:

At each time step we observe a noisy version of

a slice of 𝑄𝑡

Solution 2 (Conditional Modeling):

Train regression model to fit the observed slice of 𝑄𝑡.

min
෠𝑄
σ𝑡

෠𝑄(𝑜𝑡−𝑘:𝑡−1, 𝑎𝑡−𝑘:𝑡−1) 𝜓𝑡
𝑎 − 𝜓𝑡

𝑜 2

D/C D/C 1 D/C

D/C D/C 0 D/C

D/C D/C 0 D/CO
b

se
rv

at
io

n

Action
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Results
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Results

Predicting the pose of a swimming robot:
• Ground Truth
• Linear ARX
• RFFPSR (our model)
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Reinforcement Learning with Predictive 
State Policy Networks
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PSRNN
Feed-forward 

Policy
𝑜𝑡 , 𝑎𝑡 𝑎𝑡+1

• Can be initialized
• States have a meaning: 

can be trained to match 
observations



Preliminary Results
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Conclusions
- Predictive State Models for filtering in dynamical systems:
◦ Predictive State: State is a prediction of future observations.

◦ Two Stage Regression: Learning predictive state models can be reduced to 
supervised learning.

- Predictive State Models are a special type of recurrent networks.

- Can be extended to controlled systems and employed in 
reinforcement learning. upon that to develop a principled and 
efficient approach for learning to predict and act in continuous 
systems ?
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Thank you !
* Hefny, Downey and Gordon, “Supervised Learning for Dynamical 
System Learning” (NIPS15), https://arxiv.org/abs/1505.05310

* Hefny, Downey and Gordon, “Supervised Learning for Controlled 
Dynamical System Learning”, https://arxiv.org/abs/1702.03537

* Downey, Hefny, Li, Boots and Gordon, “Predictive State Recurrent 
Neural Networks”, https://arxiv.org/abs/1705.09353
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