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Learning Dynamical Systems
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Learning Dynamical Systems

Latent System State System Dynamics
Position & speed St

Observation
Model

g = P(S¢log.e-1)
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Learning Dynamical Systems

g = P(S¢lo1.¢-1)

P(0¢ir | 01.4=1) = P(0p4¢19¢)

history

O1.t-1

future

Ot:oo




Learning a Recursive Filter

Given:

Training Sequences:

(04,05, ...,07)

Output:

o Initial belief g4

o Filtering function f qr+1 = f(qs, 0¢)

> Observation function g Elo | 01t-1]=9(q:)



Learning a Recursive Filter

Given:
System
Training Sequences: - Non-linear
- Partially observable
- Il
(01’ 0y, ..., OT) Controlled
Algorithm
- Theoretical Guarantees
Output: - Scalability
o Initial belief g,
o Filtering function f qr+1 = f(qs, 04)

> Observation function g Elo | 01t-1]=9(q:)
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Learning a Recursive Filter

Given:

Training Sequences:

(04,05, ...,07)

Output:
o Initial belief g,
o Filtering function f
o Observation function g

8/1/2017

RNN [BPTT]

de+1 = f(qe 0t)
Elot | 01.4-1]1 = 9(q¢)

(a)—
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Learning a Recursive Filter

Given:

Training Sequences:

(04,05, ...,07)

Output:
o Initial belief g4
o Filtering function f
o Observation function g

8/1/2017

Learn a model then derive

f

HMM
[EM, Tensor Decomp.]

Directly Learn f

RNN [BPTT]

de+1 = f(qe 0t)
Elot | 01.4-1]1 = 9(q¢)

g
Ox®
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Learning a Recursive Filter

Given: Fix g (Predictive State) Learn g (Latent State)
Training Sequences:
(01,0, ..., 01) Learn a model then derive HMM
f [EM, Tensor Decomp.]
Directly Learn f q: = E[Y(0t.00) 1 01.¢—1] | RNN [BPTT]
state = E[sufficient future
_ stats] @
Output: PSIM [DAgger]

o Initial belief g, S
o Filtering function f qt+1 = f(qs, 0¢) e f
o Observation function g Elog 1 01.e-1] = g(q¢) Q
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Learning a Recursive Fi

ter

Given:

Training Sequences:

(04,05, ...,07)

Output:
o Initial belief g4
o Filtering function f
o Observation function g

8/1/2017

Fix g (Predictive State)

Learn g (Latent State)

Learn a model then derive

f

Predictive State Models
[Method of moments:
Two-stage regression]

HMM
[EM, Tensor Decomp.]

Directly Learn f

q: = E[Y(0.00) | 01:4-1]
state = E[sufficient future
stats]

PSIM [DAgger]

RNN [BPTT]

Ge+1 = f(qe 0r)

Elot | 01.4-1]1 = 9(q¢)

g
Ox®
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Learning a Recursive Filter

Why restrict f and g ?

* Predictive State (a.k.a Observable Representation):
State is a prediction of future observation statistics
— Future statistics are noisy estimates of the state.

— Reduction to supervised learning.

* Additional assumptions on dynamics facilitate the development of an efficient algorithm with provable
guarantees.

* Local improvement is still possible. PSIM ) RNN

8/1/2017 16




Predictive State Model (Formulation)

Predictive State ¢, = P(0p.p4p—1 | 01.—1) = E[Ws | 04,41 ]

Extended Predictive State p; = P(0pp4p | 01.421) = E[ (| 04,41 |

Linear Dynamics p, = W q;

future Y,
( A \
Ot-1 Ot Ot+k-1| Ot+k
| Y J
extended future &;
Y, q:
Indicator Vector | Joint Probability
Table
1st and 2nd Gaussian

moments Distribution
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Predictive State Model (Formulation)

Predictive State ¢, = P(0p.p4p—1 | 01.—1) = E[Ws | 04,41 ]

Extended Predictive State p; = P(0p.pqp | 01.60—1) = E[ (| 04,41 ]

Linear Dynamics p, = W q;

_ _ future Y,
Filtering: f(q¢, 0¢) = filter(pt» 0¢) = ffilter(WCItrOt) { \ \
learned
Ot-1 Ot Ot+k-1| Ot+k
fixed \ ’
Y
extended future &;
1I)t q: ffilter
Indicator Vector Joint Probability Bayes Rule:
Table P(ori1t+k | 01.6) X P(Op.p4k | 01:4-1)
1st and 2nd moments | Gaussian Gaussian conditional mean and
Distribution covariance.

8/1/2017
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Predictive State Model (Formulation)

Predictive State ¢, = P(0p.p4p—1 | 01.—1) = E[Ws | 04,41 ]

Extended Predictive State p; = P(0pp4p | 01.421) = E[ (| 04,41 |

Linear Dynamics p, = W q;

o future Y,
Filtering: f(qt; Ot) — filter(pt; Ot) - ffilter(WCItrot) { A \
learned
Ot-1 Ot Ot+k-1| Ot+k
fixed \ }
|
T extended future &;

Crucial to the consistency of learning algorithm.

Why this particular filtering formulation ?
Matches existing models (HMM, Kalman filter, PSR)
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Predictive State Model (Learning)

Y, and {; are unbiased estimates of q, and p;: €; and v, are correlated
Cov(qs, pt) # Cov(Py, Cr)
Y =q t &

‘(e =prt v,
Learning Procedure:
A~ 1
*qo = NZ" Y
I P ersirret . " et
Lot future Y,

\

Ot+k-1| Ot+k

Y
extended future &;
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Predictive State (Learning)

Y, and {; are unbiased estimates of g; and p;:

€¢ and v, are correlated
Cov(qe,pe) # Cov(Py, G¢)

Yy =q: + &
.\ pe = Waq,
o — Vv
(¢ = DPe TVt E[cl 01.4—1] = WE[Y | 01.¢-1]
Learning Procedure: Use regression| E[ (¢ | 0_p.e—1] = WE[We | 0¢—k-t-1]
.1 e = Wp
*qo = NZ" Y; 9 = Wo
, A denoised future g;
* Denoise examples (Y, {;) to obtain (§;,p,) ??? future
t
* Learn W using linear regression with examples (§;, D) r : \
Ot-1 Ot Ot+k-1| Ot+k
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extended future &;

denoised extended future p;
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_earning Dynamical Systems Using
nstrument Regression

S1A regression

e N

history h, estimated future §; [q;|h,]

| |

Ot—1 O¢ Ot+k-1| Ot+k

S2 regression (A\%?JW W)

L J
Y

S1B regression de estimated extended future p, |

Condition on o; (filter) =2 q¢4+1
Marginalize o, (predict) 2 q¢41)t-1
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In a nutshell

* Predictive State:
o State is a prediction of future observations

o Future observations are noisy estimates of the state

* Two stage regression:
o Use history features to “denoise” states (S1 Regression)
o Use denoised states to learn dynamics (S2 Regression)
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What do we gain ?

* More understanding of existing algorithms:

o Spectral algorithms for learning HMMs, Kalman filters, PSRs are two stage regression algorithms with
linear regression in all stages.

* Theoretical Results (Asymptotic and finite sample):
o Errorin estimating W is 5(1/\/N) [Under mild assumptions]
o Exact rate depends on S1 regression error

* New flavors of dynamical systems learning algorithms:
o HMM with logistic regression.
o Online learning of linear dynamical systems (Sun et al. 2015).

o Linear dynamical systems with sparse dynamics (Hefny et al 2015, Gus Xia 2016).
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Predictive State Models as RNNSs
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Predictive State Models as RNNSs

Predictive state models define RNNs that are
easy to initialize !!




Back to Special Case: Modeling Discrete
Systems with Indicator Vectors

Assume the discrete case: o; is an indicator vector.

Letyy =0 and §; = 0; &Q 0441

Then:
q;~> Probability Vector
p.~> Joint Probability Table

f (ps,04) = Choose column from p; correspondingto o, then renormalize
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Back to Special Case: Modeling Discrete
Systems with Indicator Vectors

0.2 01 |02 |b1 0.2
05 | —, w > 1 0.05||0.05 |D.25 > 1.1l 05
0.3 0.05(| 0.15 | p.05 0.3
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Back to Special Case: Modeling Discrete
Systems with Indicator Vectors

0.2 03
0.5 | —p > 1.1l 05
0.3 w 03
di di+1
0
, . y .
: aly < alw®o, = ) qPw@od)
0 —
0,
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Back to Special Case: Modeling Discrete
Systems with Indicator Vectors

0.2 0.2
05 | — 0\ > |11l ™05
0.3 w 03
di di+1
0
1 W = z Ay Q b, K cpy,
0 m Multiplicative
(k) < CT (Ag. o B unit
0, i1 (Aq; 0¢)
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Predictive State Models as RNNSs

Predictive units have a multiplicative structure,
similar to LSTMs and GRUs.

What about the continuous case ?
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Mean-maps for Continuous Observations

Mean-maps provide a powerfultool to model non-parametric distribution using the feature map
of a universal kernel.

A discrete distribution is a special case that uses the delta kernel and indicator feature map.
Continuous distributions can be modeled using e.g. RBF kernel.

Discrete Case General Case _

Indicator Vector Kernel feature map ¢ (x)
Joint Probability Table P(X)Y) Covariance Operator Cyy
Conditional Probability Table Conditional Operator Cxy

Normalization P(X,Y) > P(X|Y)  Kernel Bayes Rule Cxjy = CxyCyy

32
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Mean-maps for Continuous Observations

Mean-maps provide a powerfultool to model non-parametric distribution using the feature map
of a universal kernel.

A discrete distribution is a special case that uses the delta kernel and indicator feature map.
Continuous distributions can be modeled using e.g. RBF kernel.

Indicator Vector Kernel feature map ¢ (x) RFF Feature Vector
Joint Probability Table P(X.Y) Covariance Operator Cyy Covariance Matrix
Conditional Probability Table Conditional Operator Cxy Conditional Matrix

Normalization P(X,Y) = P(X|Y)  Kernel Bayes Rule Cxjy = CxyCyy  Solve Linear System

33
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Log Mean Squared Error

Results

I I I I
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Error predicting handwriting trajectories
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Extension to Controlled Systems

In controlled systems we have observations and actions. (e.g. car velocity and
pressure on pedals)

Recursive Filter:

Q Elo: | gt a:] = 9(qe, ae)

e @ Elqev1lqr 0rael = f(qr, ar, 0r)
(ac)
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Extension to Controlled Systems

Same principle

P = W(Q:)

This time, the predictive state is a linear operator encoding conditional distribution of future
observations given future actions.

Example: Think of Q; and P; as conditional probability tables.

Requires appropriate modifications to S1 regression. S2 regression remains the same.

8/1/2017
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Extension to Controlled Systems

Two stage regression: Itis all about finding
E[Q¢lot—:t—1, At—k:t—1]

0.1 0.8 0.5 0.2

0.3 0.1 0.2 0.1

Observation

0.6 0.1 0.3 0.7

Action
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Extension to Controlled Systems

Two stage regression: Itis all about finding
E[Q¢lo¢—k:t—1, Ar—p:e—1]

Problem:

At each time step we observe a noisy version of c ? ? 1 ?

®)

. )
a slice of Q; 0 ? ? 0 ?

)

(%)
S ? ? 0 ?

Action

39
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Extension to Controlled Systems

Two stage regression: lItis all about finding
ElQ¢lot—k.t-1, @t—k:t—1] = Q(O¢—pt—1, At —f:t—1)

Problem:

At each time step we observe a noisy version of 0 0 1 "

a slice of Q;

Observation

Solution 1 (Joint Modeling):

Predict the joint distribution of observation and actions.

Action
Manually convert to conditional table (e.g. normalize columns).

40
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Extension to Controlled Systems

Two stage regression: lItis all about finding
ElQ¢lot—k.t—1, Qt—k:t—1] = Q(O¢—tt—1, At —f:t—1)

Problem:

At each time step we observe a noisy version of

a slice of Q;

Observation

Solution 2 (Conditional Modeling):
Train regression model to fit the observed slice of Q.

D/C | D/C 1 D/C
D/C | D/C 0 D/C
D/C | D/C D/C

m@in Zt”@(ot—k:t—l: At —f:t—1) I,Df‘ - l/)1?”2 Action
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Results

—¥—HSE-PSR —¥— RFF-PSR Conditional S1 + Refinement N4SID
—¥—RFF-PSR Joint S1 + Refinement ~ —+— RFF-PSR Conditional S1 (Linear Dynamical System)
—-— RFF-PSR Joint S1 —¥— Kernel ARX with RFF — — Last Observation
0.3 — 10 30
/
0.25 ; g | 25 |
| - - —
2 2 =
g 027 5 g 20 |
0 o ©f 2
© 0.15 | c S 15
3 3 4 3
~ 0.1 p - 10}
4] ] G
Q Q0 2| ]
= 0.05 = s 5¢
0 0 0
0 0 0
Prediction Horizon Prediction Horizon Prediction Horizon
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Results

10 : . : : .
Predicting the pose of a swimming robot:
* Ground Truth as | |
* Linear ARX '
 RFFPSR (our model)
0.0} 1
—-0.5 | 1
_]_|] i i i i i
2.0 -15 -1.0 -0.5 0.0 0.5 10
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Reinforcement Learning with Predictive
State Policy Networks

0p, 4 PSRNN Feed-fqrward . Oy
Policy

e Can be initialized

e States have a meaning:
can be trained to match
observations




Preliminary Results
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Conclusions

- Predictive State Models for filtering in dynamical systems:
o Predictive State: State is a prediction of future observations.

o Two Stage Regression: Learning predictive state models can be reduced to
supervised learning.

- Predictive State Models are a special type of recurrent networks.

- Can be extended to controlled systems and employed in
reinforcement learning.
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Thank you !

* Hefny, Downey and Gordon, “Supervised Learning for Dynamical
System Learning” (NIPS15), https://arxiv.org/abs/1505.05310

* Hefny, Downey and Gordon, “Supervised Learning for Controlled
Dynamical System Learning”, https://arxiv.org/abs/1702.03537

* Downey, Hefny, Li, Boots and Gordon, “Predictive State Recurrent
Neural Networks”, https://arxiv.org/abs/1705.09353
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