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Abstract

Coordinate descent methods are enjoying renewed interest due to their simplicity
and success in many machine learning applications. Given recent theoretical re-
sults on random coordinate descent with linear coupling constraints, we develop
a software architecture for this class of algorithms. A software architecture has to
(1) maintain solution feasibility, (2) be applicable to different execution environ-
ments, whether local or distributed and (3) decouple problem-specific logic from
the execution environment. We demonstrate that due to the nature of these algo-
rithms, these requirements raise some issues that are not present in many other
classes of machine learning algorithms and thus can be overlooked when design-
ing a generic machine learning system.

1 Introduction

Coordinate descent (CD) methods are conceptually among the simplest schemes for unconstrained
optimization—they have been studied for a long time (see e.g., [2, 3]), and are now enjoying greatly
renewed interest. Their resurgence is rooted in successful applications in machine learning [6, 7],
statistics [5, 8], and many other areas—see [15, 16, 18] and references therein for more examples.

Parallel coordinate descent has been the focus of increasing interest. Numerous previous works (e.g.
[17][4]) addressed parallel coordinate descent where the constraints are absent or block-separable;
that is, each block can be updated independently while maintaining feasibility.

The case of coupling constraints has been addressed in [13], which proposes a distributed algorithm
for separable objective functions with Lipschitz continuous gradients in the presence of a (weighted)
sum constraint. Neocara et. el. [12] extended the formulation to a (not-necessarily separable) com-
posite objective function with general linear constraints but did not detail on parallel and distributed
implementations. In these implementations, care has to be taken to maintain feasibility of the solu-
tion by ensuring consistent updates.

In this work, we propose a software architecture for coordinate descent algorithms with linear con-
straints. The architecture we propose applies to several execution environments, including sequen-
tial, parallel and distributed implementations (with and without a central server node). In addition, it
is agnostic to the exact problem as it decouples variable update logic from the underlying execution
environment, making it easy to solve new problems once the required environment is realized. We
highlight some of the issues that rise due to the nature of coordinate descent algorithms and illustrate
how we dealt with them.

In the rest of the paper we describe our architecture in detail and then we demonstrate how to
implement two problems (a generic smooth objective function and SVM) and two environments
(local parallel and distributed with a parameter server).
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2 Architecture

We consider problems of the form

min
x
f(x) +

N∑
i=1

hi(xi)

s.t.

N∑
i=1

Aixi = 0, (1)

where xi ∈ Rn , Ai ∈ Rm×n for some m ≤ 2n, hi(xi) : Rn → R ∪ {∞} is a convex function and
f(x) : RNn → R is a smooth convex function with Lipschitz continuous gradient satisfying

‖∇xif(x
′)−∇xif(x)‖ ≤ Li‖x′ − x‖,

where x′ and x differ only in xi.

The presence of coupling constraints mandates updating at least two blocks to maintain feasibility.
The pair update outlined below is the core operation upon which our architecture is based

di, dj = argmin
Aidi+Ajdj=0

f(x) + 〈∇xi
f(x), di〉+ 〈∇xj

f(x), dj〉+
1

2α
‖di‖2 +

1

2α
‖dj‖2 + h(x′)

xj ← xj + dj , xi ← xi + di (2)

for some i, j ≤ N , where x′ is the result of adding di to xi and dj to xj and α ≤ 1
Li+Lj

is a step
size parameter. In principle, equation 2 defines a template for coordinate descent algorithms with
linear constraints; essentially one specifies a scheduler to choose block pairs and a solver for the
minimization problem. In practice, different environments impose additional considerations such as
whether different blocks are stored on different machines, the format of information required to be
exchanged and whether blocks are updated in an asynchronous manner. We would like to have a
software architecture that

• Maintains feasibility in the presence of multiple asynchronous updates.

• Isolates update computation logic from the execution environment, including where the
blocks are stored and whether external information are needed to compute the update.

• Allows flexibility in building the execution environment.

2.1 Incremental Updates

A key ingredient in our architecture to maintain consistency in a potentially parallel asynchronous
environment is incremental updates. Specifically, the module responsible for solving the minimiza-
tion in (2) outputs the increments di and dj rather than the new values of xi and xj . These increments
are applied to the existing values of xi and xj . We require that, for each scalar component xik, the
update xik ← xik+dik is executed as an atomic operation. This can be achieved on modern proces-
sors without additional locking structure using the compare-and-swap instruction. Algorithm 4 in
the appendix demonstrates this via a C++ code snippet. Since the updates are themselves consistent
and since they are applied in a sequentially consistent manner, the net result of T updates remains
consistent. This update formulation is in contrast with architectures where user-specified modules
are expected to specify the new values of variables under consideration, which may cause concurrent
overwrites to destroy feasibility in an asynchronous environment.

2.2 Modular Decomposition

The proposed architecture consists of three main components: the scheduler, worker nodes and
parameter clients.

The scheduler is responsible for selecting pairs of blocks to update. For flexibility in that aspect,
a typical scheduler is equipped with a pair selection policy whose implementation determines the
pair selection logic. A straightforward policy is to select any pair at random with equal probability.
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Customized policies could restrict pairs that can interact or bias the distribution over pairs to reduce
communication cost or enhance convergence. It is convenient to encode pair restriction in the form of
a communication graph, where each vertex corresponds to a block xi and two vertices are connected
if they can be selected as a pair.

The scheduler is also responsible for exchanging information among other modules (either locally or
through the network). The scheduler implements the execution environment but should be agnostic
to the specific problem and update logic.

A parameter read client is an interface to access the information required to compute the update for
a given block. Such information typically consists of the current value of the parameters. We refer
to this information as node input. Some information, such as the constraint submatrices Ai do not
change and will be referred to as static node input. A concrete parameter read client is required
to implement the methods

Read(block id) : node input

ReadStatic(block id) : node static

A parameter read client therefore provides an abstraction of the underlying representation of blocks,
whether it is local or remote.

A parameter update client is an interface to apply a pair update. A concrete client is realized by
providing an implementation for the method

Update(block id 1, block id 2, update 1, update 2, is async update)

The reason for providing is async update flag is to allow the client to optimize for the case where
the scheduler prevents concurrent updates to the same block.

The third main component is worker nodes. Worker nodes implement the update logic (i.e. the
minimization subproblem in equation 2). Each worker node corresponds to a block. Multiple nodes
on different machines can correspond to the same block. A pair update requires the interaction of
two worker nodes, which is implemented in the following master/slave scheme:

1. Master node computes information needed for the update and encapsulates it in
master message.

2. Based on master message, slave computes information needed for the update and en-
capsulates information used by master in slave message. Slave nodes also computes its
update (slave update).

3. Based (solely) on information computed in steps 1 and 2, the master can compute its update
(master update).

Given that scheme, a worker node implementation needs to provide the following methods:

• Init(block id, static node input)
• GetMasterMessage(slave block id, node input) : master message
• GetSlaveMessage(master block id, node input,master message)

: (slave message, slave update)
• GetMasterUpdate(master message, slave message)

It is possible to have the slave node perform all computations required to obtain the master and
slave updates, with the master only providing necessary information that is not available to the slave
node. The proposed architecture provides a additional flexibility, by allowing to split computations
between master and slave, as will be exemplified in section 3.1.

Note that the worker node is not responsible for the actual communication of messages, retrieval
of node inputs or applying the updates. By delegating these responsibilities to the scheduler, the
worker node is independent from execution environment.

As an example of interaction between these modules, Algorithm 1 depicts a scheduler in the simple
setting of a single processor.

3



1: for all 1 ≤ i ≤ N do
2: static node input← ParameterReadClient.ReadStatic(i)
3: Node(i).Init(static node input)
4: end for
5: while Stopping Criteria Not Met do
6: Select a master block i and slave block j using PairSelectionPolicy
7: master input← ParameterReadClient.Read(i);
8: slave input← ParameterReadClient.Read(j);
9: master to slave message← Node(i).GetMasterMessage(j,master input)

10: [slave to master message, slave update]←
Node(j).GetSlaveMessage(i, slave input,master to slave message)

11: master update← Node(i).GetMasterUpdate(
master to slave message, j, slave to master message)

12: ParameterUpdateClient.Update(i, j,master update, slave update)
13: end while

Algorithm 1: Sequential Scheduler

3 Problem Examples

In this section we show how to adapt our framework to two optimization problems. An adaptation
to a problem amounts to providing an implementation of worker node methods. as well as speci-
fying the the corresponding node info, static node info, master message and slave message
objects. A part of this specification is providing encoding and decoding methods required to com-
municate these objects over a network.

3.1 Smooth Objective Function

In the case where the non-smooth component h(x) is 0, the solution to 2 is given by

λ = α(AiA
>
i +AjA

>
j )

+ (Ai∇if(x) +Aj∇jf(x))
di = α∇if(x)−A>i λ
dj = α∇jf(x)−A>j λ (3)

If the worker node for xi can compute∇if(x) (or a stochastic version thereof) and has access to Ai
then we can have the following master/slave update sequence:

1. The master i computes y = Ai∇if(x) and sends both y and Ai to the slave.
2. The slave j computes λ and dj and sends back λ to the master.
3. The master computes di.

This sequence fits within our framework. For concreteness, Node info and message representations
are outlined in Algorithm 2.

Given these representation a worker node implementation can be obtained based on the aforemen-
tioned master/slave update.

In a practical implementation, the node xi does not need to send Ai to a node xj more than once.
This can be done by having each node maintain a list of previous slaves and includeAi in the master
message only if it is directed to a new slave. On the other hand, each node xi has access to a cache
to store the values of Aj and (AiA

>
i + AjA

>
j )

+ for each other node j that interacted with i as a
master. To avoid redundant storage, the same cache can be shared between all worker nodes on the
same machine. The cache has to support concurrent access without adding a locking structure. A
simple way to achieve that purpose is to pre-allocate cache entries (as pointers) and update these
entries using atomic lock-free operations, as detailed in the appendix.
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smoothobj static node input {
A : m× n constraint submatrix
}
smoothobj node input {
x : Nn-dimensional vector
}
smoothobj master message {
y : m-dimensional vector (to store Ai∇if(x))
A : m× n constraint submatrix (can be empty)
}
smoothobj slave message {
λ : m-dimensional vector (Lagrange multipliers).
}

Algorithm 2: Info and message objects used for the smooth objective function example

3.2 Support Vector Machine Training

As another example of an optimization problem that fits within our framework, we consider the
SVM dual optimization problem, given by

min
λ

N∑
i=1

λi −
1

2

∑
ij

λiλjGij +
∑
i

I[0,C](λi)

s.t.

N∑
i=1

λiyi = 0, (4)

where xi and yi are training examples and corresponding labels, G is the matrix given by Gij =
yiyjk(xi, xj) for some kernel k and IA(w) is the indicator function which is 0 for ω ∈ A and ∞
otherwise. This matches the formulation in (1). The master/slave update scheme we developed for
SVM is based on sequential minimum optimization (SMO) [14]. The idea of SMO is to optimize
(4) over a pair of dual variables λi and λj keeping other dual variables fixed. This subproblem is
fully specified by λ, y, C in addition to Gi and Gj , the ith and jth columns of G.

That makes the representation outlined in Algorithm 3. Here we assume that SMO solution will be
computed by the slave, with the master only providing the necessary input.

svm static node input {
Gc : N -dimensional corresponding column of G
y : Corresponding label
}
svm node input {
λ : N -dimensional vector
}
svm master message {
Gc : N -dimensional corresponding column of G
y : Corresponding label
}
svm slave message {
master update
}

Algorithm 3: Info and message objects used for the SVM example
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4 Execution Environment Examples

In this section we look at the other side of adapting our proposed architecture; adapting to the
execution environment. This amounts to providing a scheduler and adapting parameter read and
update clients.

4.1 Local Parallel Execution

In a multiprocessor with shared memory setting, parameter read and update clients are simple acces-
sors to shared variables. It is important to use atomic increments to implement the Update method
in order to maintain consistency in an asynchronous setting.

A scheduler is obtained by running algorithm 1 on multiple threads. Different levels of synchroniza-
tion can be provided; an asynchronous scheduler is obtained by simply having each thread run at
will. A fully synchronous scheduler can be obtained by placing a synchronization barrier after each
iteration and using a pair selection policy that provides different threads with disjoint pairs. There
are other synchronization models along the spectrum. For example, in a pair-locking model, each
thread locks each block in the pair to be updated.

4.2 Distributed Setting With a Parameter Server

In this setting, we have a central parameter server [1][9] storing the variables to be optimized as
well as a set of clients that perform the computations. The updates are committed to the server
which provides the logic to apply them (which may include, for example, rejecting updates whose
staleness exceeds some threshold). Again, server-side updates need to use atomic increments to
allow asynchronous operation.

In the parameter server setting, parameter read and update clients encapsulate communication with
the server to retrieve parameters and commit updates. The communication graph is divided into
overlapping connected subgraphs each of which is assigned to a client machine, which creates cor-
responding worker nodes. A (possibly multithreaded) scheduler based on algorithm 1 can then be
run on each machine. The pair selection policy can be implemented within the client or by remotely
querying a central scheduling process. The overall structure is depicted in figure 1.

Client Server 

Paramater Read RPC Client Paramater Read RPC Server 

Paramater Update RPC Client Paramater Update RPC Server 

Pair 
Selection 

Policy 

Worker 
Nodes 

Scheduler Parameter Storage 

Scheduling Process (Optional) 

Figure 1: Block diagram of a distributed setting with a parameter server. Arrows represent direction
of information flow.

5 Adapting Parameter Clients

Sections 3 and 4 showed that worker nodes and schedulers can be independently implemented to
fit the problem at hand and the execution environment respectively. A software coupling issue
remains with parameter read and update clients; the parameter clients determine what information
to read/write and how to read/write it. The what aspect depends on the problem while the how aspect
depends on the environment.

To avoid the need for implementing parameter clients for each problem/environment combination
we propose the following framework: Given a specific problem, a local parameter client implemen-
tation is provided which encapsulates local memory access (i.e. is compatible with local scheduler
in section 4.1). This is independent from environment adaptation. Environment adaptation, on the
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other hand, includes providing generic wrappers for the local parameter clients. The implementation
of these wrappers is independent of the implementation of the local parameter clients. Algorithm 6
illustrates this concept in more detail.

6 Discussion

In this paper we proposed a software architecture to address issues in coordinate descent algorithms
with linear constraints. Two major issues resulted from the existence of coupling constraints; the
first issue is the need to update block pairs rather than an individual blocks while the second issue
is the necessity to specify an updates as a value increment rather than a value overwrite to facilitate
asynchronous operation while maintaining feasibility. We believe that the formulation we proposed
to tackle these issues can be incorporated into more general machine learning toolkits.

To demonstrate the effect of these issues, we discuss their effect on a popular generic machine
learning framework. Perhaps the closest machine learning abstraction to the proposed architecture
is GraphLab [10][11] in the sense that it abstracts computation in terms of interactions between a
vertex and its neighborhood in a graph. To the best of our knowledge, Graphlab, in its current form,
falls short in handling the two issues we discussed. In synchronous execution, GraphLab suffers
from the fact that it uses vertex update as a scheduling unit, where each vertex corresponds to a
block. Although a vertex update can change block pairs it specifies the new value of each block
rather than an increment, which could result in an infeasible solution in an asynchronous setting. To
avoid this problem, a higher consistency model can be enforced, but the least conservative model
that can ensure feasibility requires locking a vertex with all its neighbors (in contrast to our pair-lock
model which locks precisely the blocks to be updated). This can be serious if the communication
graph is not sparse or contains high-degree nodes.

A Supplementary Code Snippets

A.1 Applying Incremental Updates

Algorithm 4 demonstrated applying atomic lock-free increments.

void increment(volatile double *target, double increment) {

double value;

do {

value = *target;

}while(value != CompareAndSwap(target, value, value+increment)); }

}

void incrementVector(volatile double vector[], int size,

double increment[]) {

for(int i = 0; i < size; ++i) {

increment(\&vector[i], increment[i]);

}

}

Algorithm 4: Applying an increment. CompareAndSwap(a,b,c) is an atomic operation that
compares the current content of memory location a to the value b and if they are equal replaces it
with the value c. The output is the current content of memory location a (before replacement).

A.2 Lock-free Caching

Algorithm 5 demonstrates lock-free cache updates in a high-level C++ code snippet.

A.3 Parameter Client Wrapper

Algorithm 6 demonstrates a high-level example of a generic parameter update client wrapper for
the parameter server scenario where communication is performed via a remote procedure call ser-
vice. Note that the implementation of the RPC client and server wrappers is independent from the
provided implementation of the parameter update client.
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//Cache[i][j] is initalized to NULL

ptr = Cache[i][j];

if(ptr == NULL) { // Element does not exist

ptr = AllocateMemory();

*ptr = ComputeMatrix(i,j);

}

ptr2 = CompareAndSwap(&Cache[i][j], NULL, ptr);

if(ptr2 != NULL) {// Element already written by another thread

delete ptr; ptr = ptr2;}

//Now ptr points to the cached element

Algorithm 5: C++ High-level code snippet for lazy computation of (AiA
>
i + AjA

>
j )

+,
CompareAndSwap(a,b,c) is an atomic operation that compares the current content of memory loca-
tion a to the value b and if they are equal replaces it with the value c. The output is the current
content of memory location a (before replacement).

template<class Update>

class ParameterUpdateClient {

public:

virtual void Update(int block_id_1, int block_id_2,

const Update &update_1, const Update &update_2,

bool is_async) = 0;

};

template<class Update>

class SVMParameterUpdateClient : public ParameterUpdateClient<Update> {

// Implementation provided by problem adaptation

};

template<class Update>

class ParmaterUpdateClient_RPCClientWrapper

: public ParameterUpdateClient<Update> {

public:

ParameterUpdateClient(RPCConnectionInfo* rpc) {...};

virtual void Update(int block_id_1, int block_id_2,

const Update &update_1, const Update &update_2,

bool is_async) {

rpc->CallRPCService(block_id1, block_id2,

Update::Encode(update_1),

Update::Encode(update_2), is_async);

}

};

template<class Update>

class ParmaterUpdateClient_RPCServerWrapper

public:

ParmaterUpdateClient_RPCServerWrapper(

ParameterUpdateClient<Update>* local_client) {...};

void RPCService(int block_id_1, int block_id_2,

const char *encoded_update_1,

const char *encoded_update_2,

bool is_async) {

local_client->Update(block_id1, block_id2,

Update::decode(encoded_update_1),

Update::decode(encoded_update_2),

is_async);

}

};

Algorithm 6: RPC wrappers for parameter update client.
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